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Brownian motion of electrons in time-dependent magnetic fields 

Geoffrey J Iverson and Xuth M Williams? 
Center for Theoretical Studies, University of Miami, Coral Gables, Florida 33124, USA 

MS received 16 November 1970, in revised form 18 September 1972 

Abstract. The behaviour of a weakly ionized plasma in slowly varying time-dependent 
magnetic fields is studied through an extension of Williamson’s stochastic theory. In particu- 
lar, attention is focused on the properties of electron diffusion in the plane perpendicular to 
the direction of the magnetic field, when the field strength is large. It is shown that, in the 
strong field limit, the classical 1/B2 dependence of the perpendicular diffusion coefficient is 
obtained for two models in which the field B( t )  is monotonic in t and for two models in which 
B( t )  possesses at least cne turning point. 

1. Introduction 

Through the fundamental work of Kurpnoglu (1963), Williamson (1968) and others 
(see also references contained in Kurgunoglu (1963)), the adaptation of the classical 
theory of brownian motion to plasma physics has been successfully achieved (William- 
son (1968) contains a review of other theories of brownian motion applicable to plasmas). 
There are several equivalent descriptions of the stochastic theory of brownian motion 
each of which one might attempt to generalize to describe the motion of particles in a 
plasma. The most obvious way to effect such a generalization is to introduce the Lorentz 
force into the Langevin equation and to solve the resulting stochastic differential equa- 
tion under certain natural assumptions concerning the statistical nature of the fluctuating 
electric field ; these assumptions provide ‘boundary conditions’ which yield a unique 
solution for the distribution function. This technique has been employed with great 
clarity by KurSunoglu (1963) in his study of plasma diffusion in a constant external 
magnetic field. 

The method of Williamson (1968) involves the construction of a simple algebraic 
equation for the spectrum of the probability density of the net displacement. This 
method is familiar from the well known theory of stochastic processes as elucidated by 
Chandrasekhar (1943). Section 2 contains a brief description of the basic elements of 
this approach. 

In this work we investigate the diffusion of a weakly ionized plasma under the influ- 
ence of an external time-dependent magnetic field. If one sets up the generalized 
Langevin equation involving time variations of the magnetic field it is soon realized 
that the problem of solving this equation is by no means a simple task. On the other 
hand, we show in 4 2 that the coefficient of diffusion can be calculated in a very simple 
way once we have solved the free particle equations of motion. In a sense therefore, the 
problem has been reduced to orbit theory. Indeed, we show that once the function 
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y ( t )  = ( l / i (O))(x( t )  - x(0)) is known the perpendicular diffusion coefficient is given by 
D, = (KF?'/2m)J," e-7fly(t)12 dt, y being the electron-neutral atom collision rate. 

We are mainly interested here in discerning the effect of the time dependence of the 
impressed magnetic field on D,. Specifically, writing B(t) = BF(t), B(0) = B, we investi- 
gate the dependence of the perpendicular diffusion coefficient on B for B >> 1, under the 
assumption that F ( t )  is a very slowly varying function oft. In general, it is not possible to 
obtain precise quantitative results. However, in $4 3 and 4, we consider models with 
specific functions F ( t )  for which the equations of motion can be integrated. Some of 
these models are similar to the work of Seymour et a1 (1965) and Seymour (1966) in their 
description of charged particle motion in a solenoid. 

Section 3 contains two models for which F ( t )  is monotonic. In $ 4 we consider two 
models in which the time-dependent fields possess turning points, that is, $(t)  = 0 
for some t > 0. In all cases diffusion across the magnetic fields is characterized by the 
classical 1/B2 dependence. Section 5 consists of some concluding remarks. 

2. Brownian motion in a time-dependent magnetic field 

Williamson (1968) has recently shown that the electron component of a weakly ionized 
plasma can be described in a manner which is formally very similar to classical brownian 
motion. This is despite the fact that each electron-neutral atom collision is quite signifi- 
cant, contrary to the situation for brownian particles. It is convenient to record here 
some of the basic results of Williamson's theory. If S(k ,  U)  denotes the spectrum of the 
distribution function W(x ,  t )  of displacement Ax in an arbitrary direction, it is shown 
(Williamson 1968) that S obeys the algebraic equation 

S = S,(l-ySo)-' (2.1) 
where y is the electron-neutral atom collision rate and So is the spectrum of the distribu- 
tion function Wo(x, t ) ,  defined as the probability of an electron travelling a distance Ax in 
time t without collision, that is, 

Wo(x, t )  dx = e-Ytf(u,, U )  dv,. 

Here f ( v , ,  ti) is (ignoring inelastic processes) the rectangular velocity distribution 

0: 
and we have denoted by U and U ,  the length and x component of the velocity vector 
respectively. We have made the usual assumption that the scattering is isotropic. 

The mean square displacement  AX)^) attains a very simple form in terms of the 
spectrum. Indeed, 

S(k ,  CO) is the spectrum S(k ,  CO) averaged over an assumed maxwellian velocity 
distribution fo(v) : 

(2.4) 
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The expression for Z 2 S / 2 k 2  in terms of the derivatives of So will be useful in the follow- 
ing. It is 

We define the coefficient of diffusion D, in the x direction by 

1 
1 - G c  2t 

D, = lim -((Ax)’). 

Consider now the diffusion of electrons in a purely time-dependent magnetic field. 
For conciseness we take B(t) = (0, 0, B(t)), and we shall assume that B(t) is slowly 
varying, that is, B(t) is quasi-static. 

The time dependence of the field obviously necessitates an extension of the argu- 
ments used in deriving the equations above. Such an extension is formally necessary 
because the particle motion will now depend not only on the time interval required to 
travel a net distance, but will also be a function of the initial time z. Equation (2.1) is then 
replaced by 

S ( k ,  U,  Q) = S,(k,  O, Q) + dR‘S”,(k, w - R’, R - R’)S(k, w, R‘) (2.1‘) 
271 

where Q is the Fourier variable conjugate to z. However, the assumption that B(t) is a 
very slowly varying function, implies that as a distribution in R, 

S(k ,  CO, Q) 1 2n G(R)S(k, w )  

where 

271 

In this way, equation (2.1’) can be integrated to yield the original equation (2.1). Thus, 
in the adiabatic approximation, the z dependence of the system can be integrated away. 

Criteria for the adiabatic approximation are given by Seymour, who shows that it is 
sufficient to impose the conditions 

We shall consider only slowly varying fields which obey these restrictions. 
In the calculation of the perpendicular diffusion coefficient, it suffices to consider a 

given direction in the plane perpendicular to the magnetic field. In order to calculate D,, 
say, from equation (2.6), we need only obtain the displacement Ax, in time t of an electron 
undergoing free motion in the field B(t). This displacement is obtained, of course, by 
solving the equations of motion for such a system. 

We write B(t) = BF(t) ,  F(0)  = 1. Under the usual assumptions (Chandrasekhar 
1960), the equations of motion in the 1-2 plane can be written 

i 
2 

x = io(t)i+-h(t)x 
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where x( t )  = x,(t)+ix,(t) and w(t)  = -eB(t)/m = o,F(t) .  The initial conditions are 
given by 

x(0) = %e'$, i(0) = iv, ei@. (2.8) 
0, 

Here, vf = ( v 2  - U : )  and $ denotes the initial azimuthal angle in the 1-2 plane. 
The 'normalized' displacement y( t )  = (l/i(O))(x(t) - x(0)) satisfies 

j ( t )  = io(t)g(t)+tiw(t)(y(t)-io,-'); 

y(0) = 0, j (0)  = 1. (2.8') 

Clearly y( t )  is independent of vl and $. The displacement along the 2 axis is thus given by 

Ax, = Im(x(t) - x(0)) = Im(i(O)y(t)) = u,(cos $ Re y( t )  - sin IC/ Im y(t)). 

Clearly then 
30 

exp(ik Ax2) = 1 i"J-,(kv, Im y(t))J,(kn, Re y( t ) )  exp{i(m-n)$) 
n,m = - m 

where we have used the well known expansion of exp(ikz) in terms of Bessel functions 
(see eg Gradshteyn and Ryzhik 1965). 

Now the spectrum So can be written 

S - IoE dt 

which by the above decomposition becomes 

So = [ dt /-%= du,f(v, v 3 )  2 i"J-,(kv, Im y(t))J,(kv, Re y( t ) )  exp{ - ( y  +io ) t )  

dv3f(v, u3) ?b;' d$ exp(ik Ax2) exp{ -(y + iw)t}, 
- E  O - 2n 

m 

m=-- io  

Equation (2.9) has been derived by making use of the addition theorem for Bessel func- 
tions (Gradshteyn and Ryzhik 1965). 

It follows from equation (2.9) and the behaviour of J, and its derivatives at the origin 
that 

Solk=,  = (i>+io)-' 

From equations (2.5) and (2.10) we obtain 

dtiy(t)12 exp{ - ( y  + i o ) t> .  

(2.10) 

Here we have assumed (purely for simplicity) that y is independent of U. This assumption 
allows the integration over U to be performed: dvv2fo(u) = 3KT/m.  We remark that 
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this assumption is by no means drastic since it is well known that the coefficient of 
diffusion is fairly insensitive to any velocity dependence of the collision rate. 

Using the above result in equation (2.3), we have 

m - K T  
- - ___ jOm dt‘ly(t’)I2 exp( - y t ’ )  J- ~ dw{y2(w- io)-, + 2iy(o - io)- - l} exp{iw(t - t ’ ) )  

2nm 

= dt’ly(t’)lz exp(-yt’)(y2(t- t ’ ) Q ( t - t ’ ) + 2 y Q ( t - t ’ ) + d ( t - t ’ ) }  
m o  

= -( ly(t)I2 K T  exp(-yt)+2y j: dt’exp(-yt’)(l -i;’t’)~y(r~)~2+:’rj~dt‘exp(-yt’)ly(~’)~2}. m 

(2.1 1) 

In deriving (2.1 1) we have used the fact that J: F ( t )  exp( - io t )  d o  is an analytic 
function in the lower half o plane, together with the regularized integrals (Gel’fand 
and Shilov 1964) 

We remark here that, to first order, 

K T  
((Ax,),) N - t 2 .  

t ~ i  m 

This is in agreement with the conventional theory of brownian motion, as one would 
expect. 

In general only the third term on the RHS of equation (2.11) contributes to D,. 
We thus have 

(2.12) 

We have written D ,  rather than D ,  in equation (2.12) since the same expression is ob- 
tained for the coefficient of diffusion along any ray in the 1-2 plane. In fact a rotation 
through an angle 0 about the 3 axis merely induces the transformation IC/ --f $+e.  
By virtue of equation (2.9) the result follows. 

In the following sections we shall use equation (2.12) to obtain D ,  for a number of 
specific time-dependent fields. We note here that if w(t) = w, = constant, it is easy to 
obtain the well known result 

D ,  = -i). K T  y 
m y 2 + o E  

Sometimes it is useful to recast equation (2.12) into a slightly different form. Writing 
g(t) = j ( t ) ,  it is a simple matter to obtain the following Volterra equation satisfied by 
g( t )  : 

dt‘(o(t)+o(t’))g(t‘). (2.13) 
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In terms of g(t) we have 

(2.14) 

where g+(y) is the Fourier transform of g(t)O(t) and is thus analytic in the half plane 
Im(p) < 0. Under certain circumstances it is possible to complete the semicircle at CO 

in the lower half plane, so that, for example, if g$ has only simple poles at ,U = y,,, of 
residue Y,, 

(2.15) 

We shall not, however, find it necessary to use equations (2.13) and (2.14) in our 
treatment of the following models. 

3. Models without turning points 

From the equations of motion (2.7) we obtain the reduced equation for the function 

u( t )  = exp --wc F(t’)  dt’ ~ ( ; J: ):::I 
w L  
4 

ii+’F2(t)u = 0 

- i  
U, 

u(0) = -, U(0) = 3. 
The solution u( t )  can be written 

where the real functions u l ,  u2 form a fundamental set for (3.1) and satisfy the boundary 
conditions u,(O) = 1, Ul(0) = 0 and u2(0) = 0, ti2(0) = 1. The Wronskian W(ul,  u2)  = 1 
for all t .  The zeros of u1 and u2 alternate and are distributed according to the magnitude 
of w, and the nature of F( t ) .  If F ( t )  + 0 monotonically as t -+ CO (or F ( t )  + CO mono- 
tonically as t + CO) the solutions will be unbounded (or vanish) for large t ,  as is to be 
expected physically. 

We shall mainly be interested in the behaviour of the diffusion constant as a function 
of CO,, w, >> 1. It is thus of some interest in view of equation (2.12) to consider the 
asymptotic behaviour of equation (3.1) as a function of the parameter 0,. It is known 
(see eg Wasow 1965) that, in general, if P(t )  = 0 at t = t o  say, the large w, behaviour of 
u( t )  will differ according to whether t - t o  or not. In this section we consider two simple 
models for which F ( t )  is monotonic. We shall find that for these two cases the relation 
D ,  oc l/wz is obeyed. 
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3.1. Model (i) 

F ( t )  = 1 +Pt ,  p > 0. 

Application of the criteria for the adiabatic approximation (Seymour 1966) 

(3.3) 

leads directly to the condition 

W. >> 1 (3.4) P 
for a slowly varying linear field. Indeed, it is easily seen that equation (3.4) is the condi- 
tion required for the adiabatic approximation for all four models we consider and we 
shall not restate it each time. 

Here, 

and the reduced equation of motion is 

W‘ 

4 
ii+“(l +Pt) ’U = 0 

which has the solution 

where J ,  4 ,  N,,, are Bessel functions of the first and second kind respectively as defined, 
for example, in Gradshteyn and Ryzhik (1965). The constants A and B are given by 

where 
of Bessel functions (Gradshteyn and Ryzhik 1965) that 

= &0,//3. For large w,/P it follows from the well known asymptotic behaviour 

where ( = &x,(l +Pt) ’ /P.  Here H\‘k is the Hankel function of the first kind. Since 
5 >> 1 for all t > 0, we may use the asymptotic form of H\$k to write 

and hence 
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From equation (2.12), 

The first two terms are easily evaluated but the third requires more work. We have 

where Ei is the exponential integral function (see eg Gradshteyn and Ryzhik 1965) and 

This may be evaluated in terms of incomplete gamma functions (Gradshteyn and 
Ryzhik 1965) of the form r($, +iioc/P) and the asymptotic behaviour of these functions 
for w,/P >> 1 leads to the result 

Therefore, retaining only the first two terms in equation (3.5),  we obtain 

If P << 1, this is simplified further to 

K TY 
wc I, 1 moz 

D ,  N - ,  

p <  1 

Thus D ,  has the usual l/w,” dependence for large U,(= B )  in this model in which the 
magnetic field increases linearly with time. 
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and 

For o, >> 1, we easily arrive at 

Write 
K Ty2 

D ,  = - ( I ,  2m + I , )  

with 

I ,  = Jof e-y'ly(t)12 dt 

I ,  = lm e-"ly(t)12 dt. 

Then, since I ,  converges uniformly in U,, we have for o, >> 1 

We need to estimate the integral appearing on the RHS of the above equation for large U,, 

This integral can be cast into the form 

x-'-' COS i(x- 1) dx r 
whose asymptotic behaviour in 3, can be obtained from that of 

Here we have written 

OC ( i i )"  
n = o n ! ( n - p )  

From a well known theorem of Barnes (Ford 1916), we have 

SO",P) = 1 -. 

S(L, p )  . ?: r( - p )  exp( - +ipn)i@ - iA- eiA + . . . . 
/.D 1 

It is now straightforward substitution to obtain 
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The corresponding expression for I ,  can be obtained in an elementary way 

o ,M sin ' ( M  - 1) 
2 

M '/'(yZ + o z M )  { [; 1 
Retaining only the leading term it follows from equations (3.8) and (3.9) that 

(3.9) 

(3.10) 

4. Models with turning points 

In this section we consider two models for which P(t )  = 0 for at least one t = to > 0. 
The second model, where the magnetic field oscillates according to F ( t )  = (1 - ,O cos 2t)"*, 
0 < /3 < 1, is very interesting physically, but unfortunately a purely analytic calculation 
of D ,  is an extremely difficult problem due to the nature of the function y ( t ) .  We do 
not carry out the necessary numerical analysis here, but content ourselves with an 
investigation of the asymptotic development of y ( t )  in 0,. 

4.1. Model (i') 

p > 0. 
1 

F ( t )  = - { 1 + (Pt  - 1)2}  
J 2  

The function 

is given by 

u(t)  = AD -il +iA)12{(l + i)A"2(pt - 1)) + BD 

where 3. = w,/2,,/2/3 >> 1,  A and B are constants and D - ~ l + i i l ~ ,  is the parabolic cylinder 
function, defined as in Gradshteyn and Ryzhik (1965). The behaviour of u( t )  for large 3. 
may be found by looking at D J z )  when both / V I  and IzI are large (see eg Bateman (1953) 
for the asymptotic behaviour of confluent hypergeometric functions when the variable 
and parameters are large). In practice, the asymptotic dependence on 3, may be seen 
most easily by investigation of the reduced equation of motion 

+ij,)i2 { - (1 + i)R'"(pt - 1)) 

where 4 = Pt - 1, with boundary conditions 

- 1  
U([ = - 1) = - 

2J2pi 

du 1 -((5 = -1) = - 
d t  28' 
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Write 

the function U(<) then satisfies the equation 
d2v 5 dv dv 3 t 2 - 2  
d t 2  t 2 + l  d( d t  4 ( t 2 +  1)2 

-+ 2ii,(t2 + 1)' 2-+ 2, = 0. _-__ 

Expansion of v ( t )  as a power series in l / i  leads to the solution 

where K O  and K,  are constants. The expression (4.4) for U(() gives one solution of 
equation (4.2) for U ( ( ) ;  another independent solution is obtained by replacing jL by -ib 
in equation (4.3) and following the same procedure to solve the new equation for U([). 
The complete solution for U ( { )  is found to be 

(4.5) 
By equation (2.12) and the triangle inequality, 

Calculation of the diffusion coefficient thus necessitates the evaluation of 

where 

Both of these integrals are 2ositive and finite ; I may be integrated immediately to give 

where XO is a Struve function and No is a Bessel function of the second kind (see Grad- 
shteyn and Ryzhik 1965). I ,  cannot be expressed easily in terms of special functions. 
However, it clearly lies within the limits 

Finally, from equations (4.6), (4.7), (4.8) and (4.9), it follows that 

constant 
D ,  z 

U , % '  0: 

which is the classical 1/B2 dependence once more. 

(4.9) 

(4.10) 
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4.2. Model (ii') 

F ( t )  = (1 - p  cos 2t)li2, o < p < 1 .  

The reduced equation of motion satisfied by 

117 

(4.11) 

is 

wL 
4 ii$"(l-pcos2t)u = 0 (4.12) 

which is the standard Mathieu equation 

i i + ( A - Q  COS 2t)u = 0 (4.13) 

with A = w:/4, QIA = p. For the purpose of the present discussion, we use the notation 
of Langer (1934). The solutions of equations (4.13) belong to three distinct classes, 
namely those of periodic, bounded and unbounded functions, corresponding to the 
regions of the A - Q  plane sketched in figure 1. In particular, the solutions of equation 
(4.12) lie on the line A = Q/p, ,8 < 1. The interesting physical ramifications of the para- 
metric resonance effect, obtained by varying w,, are well known and have been discussed 
elsewhere in considerable detail (McLachlan 1947, see also Landau and Lifshitz 1960). 

* I  / 

n 
Figure 1. Stability regions in the A - R plane. The shaded areas corrfspond to  unstable 
solutions, the open areas to stable solutions. These regions are separated by boundaries 
which correspond to periodic solutions ; full lines correspond to even periodic solutions, 
broken lines to odd periodic solutions. The solutions of equation (4.12) Iie on the line 
A = Rip. 

A fundamental system for equation (4.12) is provided by the functions u,(t), u,(t) 
satisfying uo(0) = 0, &(O) = 1, u,(O) = 1, ir,(O) = 0. In terms of these functions, we have 

1 
u(t)  = 4uo(t)---uu,(t). (4.14) 

0, 
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From the work of Langer (1934) we can deduce the following results :for 0 d t d 4 2 ,  

2 sin a(t) 
W O  9 1 U,{( 1 - p)( 1 - p cos 2t)j lis 

2 1 1 - p cos 2t 
( - j 1’4 cos E ( t )  

where 

Hence the solution of equation (4.12) is 

- i { ( ~ - p ) “ ~  cosa(t)+isina(t)} 
u(t)  1: 0 d t d 7112. 

o,((i-p)(i-pcos2t)~1’4 
(4.15) 

Alternative representations are required for 7-42 < t d 3x12, 3n/2 < t d 5x12,. . . 
and these can be built up from equation (4.15) by making use of the complete set of 
functional relations given by Langer (1934). 

The integral (2.12) for D, needs to be computed numerically; this computation has 
not yet been performed. We expect that the behaviour (4.15) of u(t) will manifest itself 
in the B dependence of the diffusion coefficient in the strong field limit. This interesting 
problem will be developed further elsewhere. 

5. Conclusion 

In the adiabatic approximation, the classical 1/B2 dependence of the perpendicular 
diffusion coefficient in the strong field limit has been obtained for models in which the 
magnetic field is a monotonic function of time and for models in which the field possesses 
a turning point. We have seen that the asymptotic dependence on w,( = B)  is not altered 
in the neighbourhood of a turning point. The 1/B2 dependence agrees with the results 
of many experiments with plasmas in which fluctuations of the density are small (see 
eg D’Angelo and Rynn 1961, Simon 1958), but offers no explanation of experiments 
such as those reported by Hoh and Lehnert (1960), Bonnal et al(1961) and Chen and 
Bingham (1961), where there is anomalous diffusion inversely proportional to B. 

Preliminary calculations indicate that the asymptotic behaviour in w, may be 
affected by the presence of a zero in the magnetic field itself, rather than in its derivative. 
For example, in the case of a sinusoidally varying field B(t) = w, cos Pt, the Mathieu 
function solutions of the reduced equation of motion behave like l/0,3/~ in the neighbour- 
hood of a zero of B(t) and this could possibly give rise to 1/0:/~ dependence of the dif- 
fusion coefficient. The suggestion (see eg Spitzer 1960) that fluctuating fields may 
provide an explanation on the microscopic level for anomalous diffusion is not incon- 
sistent with such a possibility. However, when B(t) has zeros the Seymour conditions 
for the adiabatic approximation no longer hold and a new formalism must be developed 
in order to make a rigorous study of the diffusion coefficient. 
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